Milesight

Insertion Temperature Sensor Featuring LoRaWAN® TS101

User Guide

Safety Precautions

Milesight

Milesight will not shoulder responsibility for any loss or damage resulting from not following the instructions of this operating guide.

- The probe has a sharp point. Please be careful and keep the edges and points away from human body.
- The device must not be disassembled or remodeled in any way.
- To ensure the security of your device, please change the device password during the initial configuration. The default password is 123456.
- Do not place the device close to objects with naked flames.
- Do not place the device where the temperature is below/above the operating range.
- Make sure electronic components do not drop out of the enclosure while opening.
- When installing the battery, please install it accurately, and do not install the inverse or wrong model.
- The device must never be subjected to shocks or impacts.

Declaration of Conformity

TS101 conforms with the essential requirements and other relevant provisions of the CE, FCC, and RoHS.

Copyright © 2011-2023 Milesight. All rights reserved.

All information in this guide is protected by copyright law. Whereby, no organization or individual shall copy or reproduce the whole or part of this user guide by any means without written authorization from Xiamen Milesight IoT Co., Ltd.

For assistance, please contact Milesight technical support: Email: <u>iot.support@milesight.com</u> Support Portal: <u>support.milesight-iot.com</u> Tel: 86-592-5085280 Fax: 86-592-5023065 Address: Building C09, Software Park III, Xiamen 361024, China

Revision History

Milesight

Date	Doc Version	Description
April 10, 2023	V 1.0	Initial version

Contents

1. Product Introduction 5
1.1 Overview
1.2 Features
2. Hardware Introduction
2.1 Packing List
2.2 Hardware Overview
2.3 Dimensions (mm)6
2.4 Reset Button & LED Patterns6
3. Operation Guide
3.1 NFC Configuration7
3.2 LoRaWAN Settings7
3.3 Time Synchronization11
3.4 Basic Settings
3.5 Advanced Settings 12
3.5.1 Calibration Settings 12
3.5.2 Threshold Settings12
3.5.3 Data Storage
3.5.4 Data Retransmission14
3.6 Maintenance15
3.6.1 Upgrade
3.6.2 Backup
3.6.3 Reset to Factory Default 16
4. Installation 17
5. Device Payload17
5.1 Basic Information18
5.2 Sensor Data
5.3 Downlink Commands19
5.4 Historical Data Enquiry21

1. Product Introduction

1.1 Overview

Milesight

Milesight TS101 is an all-in-one insertion temperature sensor with an integrated transmitter. It is equipped with an advanced measuring unit that provides a wide temperature measuring range.

With IP67 and IK10 ratings, the exquisite TS101 sensor is suitable for monitoring the inner temperature of Tobacco or grain stacks. It can also be applied in other warehousing scenarios which require inner temperature detection with high efficiency.

TS101 is compatible with Milesight LoRaWAN[®] gateway and mainstream LoRaWAN[®] network servers. With this low power consumption technology, TS101 can work for up to 10 years with a 4,000mAh battery. Combining with Milesight LoRaWAN[®] gateway and Milesight IoT solution, users can manage all data remotely and visually.

1.2 Features

- Equipped with highly accurate and stable DS18B20 temperature sensor chip with high resolution
- Adopt food-grade stainless-steel probe and shell material for efficient and safe detection
- Store up to 1200 sets of data locally and support data retrievability and retransmission
- IP67 and IK10 rated and phosphine corrosion-resistant for harsh environment
- Built-in 4000mAh replaceable battery and works for up to 10 years without replacement
- Integrated and compact design for wireless deployment
- Built-in NFC for easy configuration
- Compliant with standard LoRaWAN[®] gateway and network servers
- Quick and easy management with Milesight IoT Cloud solution

2. Hardware Introduction

2.1 Packing List

If any of the above items is missing or damaged, please contact your sales representative.

2.2 Hardware Overview

Milesight

Δ

2.3 Dimensions (mm)

2.4 Reset Button & LED Patterns

TS101 sensor equips with a reset button and a LED indicator inside the device, please remove the cover for emergency reset or reboot. Usually, users can use NFC to complete all steps.

Function	Action	LED Indicator
Power On	Press and hold the button for more than 3 seconds.	$Off \rightarrow On$
Power Off	Press and hold the button for more than 3 seconds.	$On \rightarrow Off$
Reset to Factory Default	Press and hold the button for more than 10 seconds.	Blinks quickly
Check On/Off Status	Quickly press the reset button.	Light On: Device is On. Light Off: Device is Off.

3. Operation Guide

Milesight

3.1 NFC Configuration

TS101 can be configured via NFC.

- 1. Download and install "Milesight ToolBox" App from Google Play or App Store.
- 2. Enable NFC on the smartphone and open "Milesight ToolBox" App.
- 3. Attach the smartphone with the NFC area to the device to read the basic information.

4. Basic information and settings of devices will be shown on ToolBox if it's recognized successfully. You can read and write the device by tapping the button on the App. Password validation is required when configuring devices via an unused phone to ensure security. The default password is **123456**.

Status	Setting	Maintenance
SN	67321	07453450005
Model		TS101-868M
Device EUI	24E12	24732D074534
Firmware Version		V1.1
Hardware Version		V1.0
Device Status		ON 🛑

Note:

1) Ensure the location of the smartphone NFC area and it's recommended to take off the phone case.

- 2) If the smartphone fails to read/write configurations via NFC, move it away and try again later.
- 3) TS101 can also be configured by a dedicated NFC reader provided by Milesight IoT.

3.2 LoRaWAN Settings

LoRaWAN settings is used for configuring the transmission parameters in LoRaWAN[®] network. **Basic LoRaWAN Settings:**

Go to **Device > Setting > LoRaWAN Settings** of ToolBox App to configure join type, App EUI, App Key and other information. You can also keep all settings by default.

Parameters

24E124732D074534	
* APP EUI	
24e124c0002a0001	
* Application Port	- 85 +
Join Type	
ΟΤΑΑ	~
 Application Key 	
*****	****
LoRaWAN Version	
V1.0.3	~
Work Mode	
Class A	•
RX2 Data Rate	
DR0 (SF12, 125 kHz)	•
RX2 Frequency	
869525000	
Confirmed Mode (1)	
Rejoin Mode	
Set the number of detec	ction signals sent (1)
32	
ADR Mode i	•
Spreading Factor (1)	
SF10-DR2	
TXPower	
TXPower0-16 dBm	•

Device EUI	The device's unique ID can also be found on the label.		
App EUI	The default App EUI is 24E124C0002A0001.		
Application Port	The port used for sending and receiving data, the default port is 85.		
Join Type	OTAA and ABP modes are available.		
Application Key	Appkey for OTAA mode, default is 5572404C696E6B4C6F52613230313823.		
Device Address	DevAddr for ABP mode, default is the 5 th to 12 th digits of SN.		
Network Session Key	Nwkskey for ABP mode, default is 5572404C696E6B4C6F52613230313823.		
Application Session Key	Appskey for ABP mode, default is 5572404C696E6B4C6F52613230313823.		
LoRaWAN Version	V1.0.2 and V1.0.3 are available.		
Work Mode	It's fixed as Class A.		
RX2 Data Rate	RX2 data rate to receive downlinks.		
RX2 Frequency	RX2 frequency to receive downlinks. Unit: Hz		
Spread Factor	If ADR is disabled, the device will send data via this spread factor.		
Confirmed Mode	If the device does not receive an ACK packet from the network server, it will resend data once.		
Rejoin Mode	Reporting interval ≤ 30 mins: the device will send a specific number of LinkCheckReq MAC packets to the network server every 30 mins to validate connectivity; if there is no response, the device will rejoin the network. Reporting interval > 30 mins: the device will send a specific number of LinkCheckReq MAC packets to the network server every reporting interval to validate connectivity; if there is no response, the device will rejoin the network the network.		
Set the number ofpackets sent	When rejoin mode is enabled, set the number of LinkCheckReq packets sent.		
ADR Mode	Allow the network server to adjust datarate of the device. This only works with Standard Channel Mode.		
Tx Power	Transmit power of the device.		

Note:

- 1) Please contact sales for the device EUI list if there are many units.
- 2) Please contact sales if you need random App keys before purchase.
- 3) Select OTAA mode if you use Milesight IoT Cloud to manage devices.
- 4) Only OTAA mode supports rejoin mode.

LoRaWAN Frequency Settings:

Go to **Setting > LoRaWAN Settings** of ToolBox App to select supported frequency and select channels to send uplinks. Make sure the channels match the LoRaWAN[®] gateway.

* Support Freque	ency		
EU868			•
•	_	868.1	+
	_	868.3	+
	_	868.5	+
	_	863	+

If frequency is one of CN470/AU915/US915, you can enter the index of the channel that you want to enable in the input box, making them separated by commas.

Examples:

Milesight

1, 40: Enabling Channel 1 and Channel 40

1-40: Enabling Channel 1 to Channel 40

1-40, 60: Enabling Channel 1 to Channel 40 and Channel 60

All: Enabling all channels

Null: Indicates that all channels are disabled

* Support Frequence	зy
AU915	•
Enable Channel Ind	lex (i)
0-71	
Index	Frequency/MHz i
0 - 15	915.2 - 918.2
16 - 31	918.4 - 921.4
32 - 47	921.6 - 924.6
48 - 63	924.8 - 927.8

3.3 Time Synchronization

• ToolBox App Sync

Milesight

Go to Device > Status of ToolBox App to click Sync to sync the time.

• Network Server Sync:

Go to **Device > Setting > LoRaWAN Settings** of ToolBox App to change device LoRaWAN[®] Version as 1.0.3, the network server will use MAC command to assign the time to device every time when it joins the network.

Note:

1) This function is only applicable to network server using LoRaWAN[®] 1.0.3 or 1.1 version.

2) Network server will sync the time which timezone is UTC+0 by default. It's suggested to sync the timezone via ToolBox App to change the timezone.

3.4 Basic Settings

Go to **Device > Setting > General Settings** to change the reporting interval, etc.

- arametero		ocomption	
Parameters	D	escription	
	Change Password		
	Data Retransmission (i)		
	Data Storage (1)		
	Reporting Interval	60 + min	
	°C	-	
	Temperature Unit (1)	Temperature Unit (1)	

Reporting Interval	Reporting interval of transmitting data to the network server. Range:	
	1~1080min; Default: 60min	
	Change the temperature unit displayed on the ToolBox.	
Temperature Unit	Note:	
	1) The temperature unit in the reporting package is fixed as °C.	
	2) Please modify the threshold settings if the unit is changed.	

Data Storage	Disable or enable reporting data storage locally. (see section $3.5.3$ to export data)
Data Retransmission	Disable or enable data retransmission. (see section $3.5.4$)
Change Password	Change the password for ToolBox app or software to read/write this device.

3.5 Advanced Settings

3.5.1 Calibration Settings

ToolBox supports temperature calibration. Go to **Device > Setting > Calibration Settings** to type the calibration value and save, the device will add the calibration to raw value.

Temperature	
Numberical Calibration	
Current Value: 26 °C	
Calibration Value	
-1	°C
Final Value: 25 °C	

3.5.2 Threshold Settings

Go to **Device > Setting > Threshold Settings** to enable the threshold settings and input the threshold. TS101 sensor will upload the current data once instantly when the temperature threshold is triggered. Note that when you change the temperature unit, please re-configure the threshold.

Temperature Over / °C			
Below / °C			
Temperature mutat	tion valu	ie over	/°C 🛑
0.0			
Collecting Interval	_	10	+ min

Parameters	Description
Tanan anatura Thuashald	When the temperature is over or below the threshold value, the
Temperature Threshold	device will report an alarm packet.
	When the temperature mutation value is over the threshold value,
Temperature Mutation	the device will report an alarm packet.
Value	Temperature Mutation Value = Current temperature - Last
	temperature .
Collecting Interval	Collecting interval for detecting the temperature. Default: 10min;
	Range: 1~1080min

3.5.3 Data Storage

TS101 sensor supports storing more than 1,200 data records locally and export data via ToolBox
App. The device will record the data according to reporting interval even not joining to network.
1. Go to **Device > Setting > General Settings** of ToolBox App to enable data storage feature.

2. Go to **Device > Maintenance** of ToolBox App, click **Export**, then select the data time period and click **Confirm** to export data. The maximum export data period on ToolBox App is 14 days.

≡ TS101-868M					
Status					
Firmware V				/1.1	
Hardware V	ersion		Ň	/1.0	
Manual Upg					
Restore Fac	tory Defa	ault			
Cancel E	Export Da	ata Perio	d C	onfirm	
2023-04-04	13:58	To 202	3-04-11 1	13:58	
				Э	
2021	2	2	1.1	56	
2022	3	3	12	57	
2023	4	4	13	58	

3. Click **Data Cleaning** to clear all stored data inside the device.

Export Historical Data

3.5.4 Data Retransmission

TS101 sensor supports data retransmission to ensure the network server can get all data even if network is down for some times. There are two ways to get the lost data:

- Network server sends downlink commands to enquire the historical data for specifying time range, refer to section <u>5.4</u>.
- When network is down if no response from LinkCheckReq MAC packets for a period of time, the device will record the network disconnected time and re-transmit the lost data after device re-connects the network.

Here are the steps for retransmission:

1. Ensure the device time is correct, please refer <u>3.3</u> to sync the time.

2. Go to **Device > Setting > General Settings** to enable data storage and data retransmission feature.

3. Go to **Device > Setting > LoRaWAN Settings** to enable rejoin mode and set the number of packet sent. Take below as example, the device will send LinkCheckReq MAC packets to the network server at least every 30 minutes to check if the network is disconnected. If there is no response for 4 times (4*30 minutes = 120 minutes = 2 hours), device network status will change to de-activated and the device will record a data lost time point (disconnected time minus 2 hours).

Note: If the reporting interval is less than 30 minutes, the time = packets sent * 30 minutes; if the reporting interval is more than 30 minutes, the time = packages sent * reporting interval.

Rejoin Mode	
Set the number of detection signals sent	<u>(</u>)
4	

4. After the network connected back, the device will send the lost data from the point in time when the data was lost according to the reporting interval.

Note:

1) If the device is reboot or re-powered when data retransmission is not completed, the device will re-send all retransmission data again after device is reconnected to the network.

2) If the network is disconnected again during data retransmission, it will only send the latest disconnection data.

3) The retransmission data format is started with "20ce", please refer to section 5.4.

4) Data retransmission will increase the uplinks and shorten the battery life.

3.6 Maintenance

3.6.1 Upgrade

1. Download firmware from Milesight website to your smartphone.

2. Open Toolbox App, go to **Device > Maintenance** and click **Browse** to import firmware and upgrade the device.

Note:

1) Operation on ToolBox is not supported during a firmware upgrade.

2) Only the Android version of ToolBox supports the upgrade feature.

Status	Setting	Maintenance		
SN	6732D	07453450005		
Model		TS101-868M		
Firmware Versio	n	V1.1		
Hardware Versic	'n	V1.0		
Manual Upgrade				
Browse				

3.6.2 Backup

Milesight

TS101 supports configure backup for easy and quick device configuration in bulk. Backup is allowed only for devices with the same model and LoRaWAN[®] frequency band.

1. Go to **Template** page on the App and save the current settings as a template. You can also edit the template file.

2. Select one template file saved in the smartphone and click **Write**, then attach the smartphone to another device to write the configuration.

Note: Slide the template item left to edit or delete the template. Click the template to edit the configurations.

3.6.3 Reset to Factory Default

Please select one of the following methods to reset the device:

Via Hardware: Hold on the power button (internal) for more than 10s.

Via ToolBox App: Go to Device > Maintenance to click Reset, then attach the smartphone with NFC area to the device to complete the reset.

4. Installation

Insert the probe into the measured object directly.

Note: If the density of the measured object is too high to insert the probe directly (such as haystack), please use rubber hammer to strike the anti-strike area of TS101 until the probe is completely inserted into the measured object.

5. Device Payload

All data are based on the following format (HEX), the Data field should follow little-endian:

Channel1	Type1	Data1	Channel2	Type2	Data2	Channel 3	
1 Byte	1 Byte	N Bytes	1 Byte	1 Byte	M Bytes	1 Byte	

For decoder examples please find files on <u>https://github.com/Milesight-IoT/SensorDecoders</u>.

5.1 Basic Information

TS101 reports basic information about the sensor every time it joins the network.

Channel	Туре	Description
	01(Protocol Version)	01=>V1
	09 (Hardware Version)	01 40 => V1.4
	0a (Software Version)	01 14 => V1.14
П	0b (Power On)	Device is on
	Of (Device Type)	00: Class A, 01: Class B, 02: Class C
	16 (Device SN)	16 digits

Example:

ff0bff ff0101 ff166732d07453450005 ff090100 ff0a0101 ff0f00					
Channel	Туре	Value	Channel	Туре	Value
ff	0b (Power On)	ff (Reserved)	ff	01 (Protocol Version)	01 (V1)
Channel	Туре	Value	Channel	Туре	Value
ff	16	6732d07453	ff	09	0100
11	(Device SN)	450005	11	(Hardware version)	(V1.0)
Channel	Туре	Value	Channel	Туре	Value
ff	0a (Software version)	0101 (V1.1)	ff	Of (Device Type)	00 (Class A)

5.2 Sensor Data

TS101 reports sensor data according to reporting interval (60 min by default).

Channel	Туре	Description
01	75 (Battery Level)	UINT8, Unit: %
03	67 (Temperature)	INT16, Unit: °C, Resolution: 0.1°C
83	67	Threshold Alarm, 3 Bytes, Temperature(2B) + 01
93	d7	Mutation Threshold Alarm, 5 Bytes, Temperature(2B) + Mutation Value(2B) + 02

Example:

1. Periodic Packet

017564 0367f900					
Channel	Туре	Value	Channel	Туре	Value
01	75 (Battery)	64 => 100%	03	67 (Temperature)	f9 00 => 00 f9 =>249*0.1 =24.9°C

2. Temperature Threshold Alarm Packet

83675201 01			
Channel	Туре	Value	
0.0	67	52 01 => 01 52 => 338*0.1 = 33.8°C	
03	(Temperature)	01 => Temperature Alarm	

3. Temperature Mutation Alarm Packet

93d74e01 c602 02				
Channel	Туре	Value		
		Temperature: 4e 01 => 01 4e => 334*0.1		
	d7	= 33.4°C		
93	(Temperature	Mutation Value: c6 02 => 02 c6 =>		
	Mutation Threshold)	710*0.1=7.1°C		
		02 => Mutation Alarm		

5.3 Downlink Commands

TS101 supports downlink commands to configure the device. The application port is 85 by default.

Channel	Туре	Description	
	10 (Reboot)	ff (Reserved)	
	03 (Set Reporting Interval)	2 Bytes, unit: s	
	02 (Set Collecting Interval)	2 Bytes, unit: s	
	06 (Set Threshold Alarm)	9 Bytes,	
		CTRL(1B)+Min(2B)+Max(2B)+0000000(4B)	
ff			
		CTRL:	
		Bit2~Bit0:	
		000=disable	
		001=below	
		010=above	

	011=within
	100=below or above
	Bit5~Bit3: ID
	001=Temperature Threshold
	010=Temperature Mutation Threshold
	Bit6:
	0=disable the Alarm Threshold
	1=enable the Alarm Threshold
	Bit7: Reserved
68 (Data Storage)	00: disable, 01: enable
69 (Data Retransmission)	00: disable, 01: enable
	3 Bytes
6a (Data Retransmission	Byte 1: 00
Interval)	Byte 2-3: interval time, unit:s
	range: 30~1200s (600s by default)

Example:

1. Set reporting interval as 20 minutes.

ff03b004		
Channel	Туре	Value
ff	03 (Set Reporting Interval)	b0 04 => 04 b0 = 1200s = 20 minutes

2. Reboot the device.

ff10ff			
Channel Type Value			
ff	10 (Reboot)	ff (Reserved)	

3. Enable temperature threshold and configure the alarm when the temperature exceeds 30°C.

ff06 ca 0000 2c01 0000000			
Channel Type Value			
ff	06 (Set Threshold Alarm)	CTRL: ca =11 001 010	
		010 = above	
		001 = Temperature Threshold	
		1 = enable the Threshold Alarm	
		Max: 2c 01 => 01 2c => 300*0.1 = 30°C	

4. Disable mutation threshold and configure the alarm when the mutation value exceeds 5°C.

ff06 10 0000 3200 0000000			
Channel Type		Value	
	06(Set Threshold Alarm)	CTRL: 10 = 0 <mark>0</mark> 010 000	
ff		010 = Temperature Mutation Threshold	
		0 = disable the Threshold Alarm	
		Max: 32 00 => 00 32 => 50*0.1 = 5°C	

5.4 Historical Data Enquiry

TS101 supports sending downlink commands to enquire historical data for specified time point or time range. Before that, ensure the device time is correct and data storage feature was enabled to store the data.

Command format:

Channel	Туре	Description	
fd	6b (Enquire data in time point)	4 Bytes, unix timestamp	
		Start time (4 bytes) + End time (4 bytes),	
fd	6c (Enquire data in time range)	Unix timestamp	
fd	6d (Stop query data report)	ff	
ff	6a (Report Interval)	3 Bytes,	
		Byte 1: 01	
		Byte 2: interval time, unit: s,	
		range: 30~1200s (60s by default)	

Reply format:

Channel	Туре	Description
		00: data enquiry success
fc	6b/6c	01: time point or time range invalid
		02: no data in this time or time range
20	ce (Historical Data)	Data time stamp (4 Bytes) + Data Contents (Mutable)

Note:

1. The device only uploads no more than 300 data records per range enquiry.

2. When enquiring the data in time point, it will upload the data which is the closest to the search point within the reporting interval range. For example, if the device's reporting interval is 10 minutes and users send command to search for 17:00's data, if the device find there is data stored in 17:00, it will upload these data. If not, it will search for data between 16:50 to 17:10 and upload the data which is the closest to 17:00.

Example:

1. Enquire historical data between 2023/3/29 15:05:00 to 2023-3-29 15:30:00.

fd6c 1ce32364 f8e82364			
Channel Type Value			
	6c (Enquire data in time range)	Start time: 1ce32364=> 6423e31c =	
fd		1680073500s =2023/3/29 15:05:00	
iu iu		End time: f8e82364 => 6423e8f8 =	
		1680075000s =2023-3-29 15:30:00	

Reply:

fc6c00			
Channel Type Value			
fc	6c (Enquire data in time range)	00: data enquiry success	

20ce 23e42364 0401			
Channel	Туре	Time Stamp	Value
20	ce (Historical Data)	23e42364 => 6423e423 => 1680073763s = 2023-3-29 15:09:23	Temperature: 04 01=>01 04 =26°C

-END-